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A b s t r a c t

This paper develops methods for noninteracting  control of artic.u]atecl,  possibly
flexible, multibody  space vehicles basml o~l tlIe following diagonalizcxl  equation of
motion: b -I C(8,  v)= E. Nonilltm-a.ctioJl  iln~)]ics  that  at  cac.h fixed tilne instant, t h e
cent rol for each degree of frecclorn is dcc.ouplcd  fro] n all oft he other degrees of frccdo~n.
The diagonal equations arc obtained by using the rccclltly  developed Inass Inatrix
factorization M(0) :=77z(O)77Z*  (0), which is rcadil y i~nplmncnted using the spatially
recursive filtering and smoothing methods advaliccd by the authors ill recent  years.

1 Introduct ion

l’hc  diagonal equations of nlotioll result by coxnbilling l,a.grallgian mccllallics with tile
n]ass lnatrix factorization

M  =  [1 + ll@l{]D[l  -/ llqhK]* (1.1)

in which 11, q$, D and K are spatial operators mechanized mmrsivcly  by suitably
defined [1]- [2] spatial filtering and slnoothil)g  algoritlill~s. Use of this in the systm
kinetic energy  K(I?, ~) = ~6*M(0)0  results in

IC(o, b)=-; v”v := ;; V’(k) (1.2)
k. 1

wllcrc v Z: [v(I), . . . , V(M)] is a new set of variables related to the joint-angle rates b
by

v ~D+[] + H~K]b (1.3)

In these  new variables, the Iii]lctic energy is diag,onalized  in the scllsc that it is a
simple sum of the squares  of the total joillt rates v(k)  over all of the .IV joints, ‘J’llis

. .
is in contrast to the origiIlal expression IC(O, O)= ~0 Jbf(0)O  W]lich involves  the mass
nlatrix M(0) as a wciglltillg lnatrix. q’he diago~lal  equations of Inotioll ti-{-C(O,  v)= c
are obtained in this paper by applying  classical I,a.grangia,n lnec.lla,nics  methods to the
above diago~lalizcd  kitletic el~ergy. ‘J’he Hew varial)lcs v have a physical interpretation
as time-derivatives of I,a.grangian quasi-coordinates, silni]ar to those  typically  encoun-
tered  [.3, 4] in analytical d yllamics.  A nothcr  key terln  in the IICW equations of motion
is the forcing ‘finput” c = [C(I ),. . . . c(~)] appearing on the right  side of the equa-
tion.  ~’his term is related to the applied moInc]Its 7’ by mmns of tl~e configuratio]l
depmdcnt  rclationshil]

c =- 77L-*(0)T  = D-*(I - H@K)T (1.4)

‘1’he operators H, +, K and D arc mechanimd  by an inward filtering operation  [1].
~’he inputs 6 also have a physical il]tcr~)r(~tatic)  ll. ‘J’hc i]l~)ut E(k) at tile k~h joilLt call
bc tllou.ght  of as bcins  that part of the applied lllolnent  ?’(k) that dots mecllanica]
work at tl~is  joint.

‘J’he quasi-coordinates v appcxtrillg  in the dia~ol~ali~,cd  equa.tiolls  of ~I)otioll arc
closely analogous to the innovations ~)rocess extcllsivcly  investigated [5] ill tile area
of liucar  fi]tcring  and cstilnation  for state space systclns. ‘J’he innovations  process [5]
i s  it CC!lltriil  illgrcdiel]t ill factori[~g , cli:\goll:i  li7, illp,,  and invert  i~)g state-sl)ace s.yste IN



~ovaria.ncc matrices by means of Kallna,n filte,rillg  and s]noothil)g  algorithms. ‘l’he
innovations process plays a similar role in the dynamics  of nlechanica]  systems [1 ,6,7].
q’he analogy between mtilnation  theory and robot  dynalnics  has Lcc]i  one of the cclltral
thclrlcs investigated by the authors [1, 2].

2 Diagonalization in Velocity Space

A diagonalizing  transformation can be found ill velocity space. q’his transfor]nation
replaces the joint-  an{~lc velocities O with a new set of velocities v, without replacing
the cmlflguration  variables 0. The search for this transforlnation  bcgills  with the
following factorization of the lnass Inatrix.

A s s u m p t i o n  1 There exists a S?1100!/1, differc?tiiabie and ilttxrlildc juncliott 77L(0),

with inucvsc de~loted  by k?{(?), which factors Ihc: lnoss matrix  us M(0)= m(0)m* (0)
for all co ftfigurations. The juncfion m[O)  tLeed not b e  t h e  g r a d i e n t  oj a n y
junction,

l’hesc  equations of motion  are considerably si~np]er  than the original ones. I’lle lnass
nlatrix  here is equal to the ideniity  matrix. ‘1’hc  most critical clclncllt leading to
the above diagonalized  equations is the ~na.ss  matrix factor m,(o).  A numerical (e.g.
Cholcsky-]ikc)  factorization of tile mass lnatrix  at each co~lfiguratio],  ca~l bc used to
obtain  a candidate factor 77z(0). IIowever,  it may ]lot bc easy to interpret physically
tile corresponding transformed] variables.

Recent results [1, 6] have cstablisllcd  that the ~~lass matrix call  be factored and
inverted using ~ncthods widely usccl  ill linear filtering  and estilnation  theory. ‘J’llese
results arc summarized by the following; identities, whose proof can be found ill [1, 6].

Identity 1

M  = H~Mc+”ll” (2.6)

M  =  [1,+ H@ K]D[l -I lJ(#)K]” (2.7)

[1+- H@{]-’ = 1- HIJK (2.8)

(2.9)M - l  =. [1 -- Ht/)K]*D-’[l  - II+K]

‘1’he innova,tiolls  factorization in ldmltity  1 leads to a set of diagonal equatiolls  of
motion. ‘1’o this e~ld, define the operators 7r-L(0) and 4(0)  as

m(o) = [1 -{ IL#dq])+ 4(0) = ‘m- ‘(o)=. D;’+ [1 - H7#K] (2.10)

and

M(0)== m(O)m*(O); M-’(0)  =zl*(O)f(O) (2.11)

‘1’hc  function m(0) so defi]lcd satisfies all of the conditions  ill AssuI1~ptioll  1, altlloug]l
verifying the condition of diff’crcntiabi]ity  requires  t]ic followili~ lnore careful argulncnt.
‘i’l]c operators 11 and @ are smooth and diff’crcl!tiablc  fullc.tiolls  of t})c coordillatcs,
S0 the only ])otclltial troublespot  is in tll{’  diffcrolltiability  of tllc articulated body
quantities, particularly the illvcrse 1)-  1 of tlic diap,ollal  01)(’rill  or I) = 11 Pll *. ‘1’l)is



diagonal matrjx D is always positive clcfinitc .311d invertible. Collsequwitly,  D- 1 is
always a smooth and diffemltiablc function of 0. ‘i’bus, m = [1 i 114K]D4 is also
a smooth and cliffercntiab]e  matrix function. ‘J’llus,  m((l) satisfies all the conditions
in Assumption 1.

O(A9  Algorithms for C(O, u)
An a~gorithm  to compute C(O, v) recursively is described below. It is assult~e.d  that
V as well as the various articulated body quantities have been computed and are
available prior to these com~)utatiolls.

.A lgorithm  I

i(o) = o

fork z.1...hf

x(k) =  n,(k)  l’(k)

i(k) = ?/)(k,  k - l)F(k  - l)?#*(k,  k -  1 ) - {  x(k)+ x*(k)

y(k) = @(k, k – l)y(k -- l)+2[v(k)xM(k)-  X(k)+ x’(k) ]v(k)+
‘l#qk, k -- I)P(k - l)v(k - 1)- F(/t)#)*(k  + l,k)v(k+  ])

c(k) = ;D*H(k)y(k)
end loop

q’his o(N) algorithm proceeds fro]n tip-to-base ancl also solves t]]c forward dyllalnics
prohlelll in the (0, v) coordinates.

Coriolis  Force Does No Work
‘i’bc Corio]is  term C(O, v) is orthogonal to the geueralizwl velocities u and thcrefom
dots 1)0 Inccha.nical  work.

I,ernrna 2: V“c(o,v  )=- (1 m

‘J’hc orthogona]ity  of the nonlinear  Coriolis forces is silnilar  to t}lc orthogolla]ity
condition w . w X 1 J ti = O of the gyroscopic  force term in the equations of motion
for a single rigid body  moving with the angular velocity w. III contrast, tbc corre-
sponding  Coriolis forces tcrln  C(O, b) in the regular equations of motio]l  in dots work,
i.e., U*C(O, b)# O. q’hc Iioll-workillg  nature  of tllc (;oriolis forces has an intcrcxtillg
inll)lication.

.Lemrna  3 : l’hc rate of c]LiLngc of the ki?)ciic energy is t]le d o t  p r o d u c t  of  the
generalized jorces  and gcncraiized  velocities

$qq ~)=;u’ti = V’[c-c(o,  v)]=” V*’C (2,12)

B

Noninteracting  Control
q’lIc diagonal equations can also be used for to design controllers that arc decoupled
or noll-interacting  in a. quasi-static. sm~sc, ‘1’he troll quasi-static. denotes the idea that
fol a fixed time instant  the control is dccoul)lcd. ‘1’hc allalysis .a~ld colltro] dcsigl(  i s
si]llplcr  because  the cquatiolls  of motion used jn this design are decoupled,

Chntro]  1 (a) !l’he rate fccdbclck  control c =: – cv in uhich  c is a positive diago71al
covllrol  gairl  matrix  venders t.lLc systctit  sta!)lc il~ tll< sense  of 1.yapu7iov.
(b) T’hc Jmdkck control E =  -ClLl - Cg.l.ld,ll{?  - )’(0)]  in uhicil c1  a~~d c, c,rc posi-
ti~~c, digo?l~!l  COlltlTJl  g(17’11 71 Kltl’iCCS, (Y1’l(scs  lhc Syqst {’111 t o  I’(!OC)l thr prcscrikd  corlJi{gll  -



‘,,

ration F and drives ihc velocities to zero,

3 C o n c l u s i o n s

‘]’hc diagonalizecl  equations  of Inotions  prcsm]ted llerc arc very closely related  to the
body of knowledge [1,2,6,8] recently developed by the authors OIL spatially recursive
algorithlns  for inverse and forward dyllalnics. ~1’hc present paper complclne.nts and
builds upon the previous work by writing explicitly the c]iagonalized  I,agrangial\  equa-
tions of motion  which correspond to t}lc rccursivc  algorithms. ‘i’hc focus here is o]l
the new equations of motion, on the dia.gonalizillg  transformations required to obtain
theln,  and On the physical interl)retation  of the tr.ansforrnccl  variables. ‘1’he results
presented mnlmcl  in a single diagonalimd  equation several of the spatially recursive
algorithms previously dc.vclop  cd. g’his provides all additional step  toward  all increas-
ingly Inorc succinct sta.tcmmlt  of the equations of ]notion for articulated lnultibody
systelns.
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